Design and Debug: Essentiall Concepts

CS 16: Solving Problems with Computers |
Lecture #8

Ziad Matni
Dept. of Computer Science, UCSB

Outline

 Midterm# 1 Grades
* Review of key concepts

* Loop design help
— Ch. 3.3, 3.4 in the textbook

* Debugging your code
— Ch. 5.4, 5.5 in the textbook

5/2/17 Matni, CS16, Sp17

Announcements

* Midterm is graded!
— Grades online

* Homework #7 due today
* Lab #3 was due Monday, 5/1
e Lab #4 due today

e Homework #8 is out

Don’t forget your TAs’ and Instructor’s office hours!! ©

5/2/17 Matni, CS16, Sp17

25

20

15

10

(8,]

<65

5/2/17

65 -69.9

Midterm

Grade Distribution for Midterm #1
CS 16, Sp 17 (Matni)

70-74.9

75-79.9

80-84.9 85-89.5

Matni, CS16, Sp17

1 Results

90-94.9

>9

Average| 86.1
Median 89
Std. Dev.| 10.1
Min 53
Max 102

Programming and submit.cs:
The Devil is in the Details...

Change Tests: 1_general -- Your program's output did not match the expected.

Correct Output Your Output

.<<Remaining diff not shown>> .+ «K<Remaining diff not shown>>

Change Tests: 2_single -- Your program's output did not match the expected.

Correct Output Your Output

.K<Remaining diff not shown>> .K<Remaining diff not shown>>

Change Tests: 3_multiple -- Your program's output did not match the expected.

Correct Output | Your Output

A Review of Basic Concepts
If-Else vs. Switch-Case

If-Else conditional branches:

* Great for variable conditions that give you a Boolean

 (Can use any data type
 Can do more complex branching

Switch statement branches:
* Great for fixed data values that give you a return value

— i.e. Menu-style

e Cannot do Boolean on the case!
* Cannot use anything other than int, char or enum

5/2/17 Matni, CS16, Sp17

A Review of Basic Concepts
If-Else Conditionals

if (AmountDesc == “Not a lot”) {
cout << “This 1s a small amount”;
p += (amount - 50);

r = calcInterest(p); 1. Note the syntax

2. Why is this type of conditional
} NOT applicable to switch/case?

else { 3. Note the coding style
cout << “This may be enough”;
p += amount;
r = calcInterest(p - 590);

5/2/17 Matni, CS16, Sp17 7

A Review of Basic Concepts
If-Else Conditionals

if ((amt > ©) && (amt <= 10)) B e
Why is it ok NOT to

cout << “This 1is between 1 and 10\n”;
have {...} here???

else if ((amt > 10) && (amt <= 20))
cout << “This 1s between 11 and 20\n”;

Why is it
L - - , . NECESSARY to
cout << “This is outside the range\n”; R el here???
cout << “Enter another number: ”’;
cin >> num;
1. Note the syntax
} 2. Why is this type of conditional

NOT applicable to switch/case?
3. Note the coding style

5/2/17 Matni, CS16, Sp17

A Review of Basic Concepts
Switch-Case Conditionals

int num; 1. Note the syntax
cout << "Gimme a number! "; 2. Why does this type of conditional
cin >> num; apply well to switch/case?

3. Note the coding style

switch (num) {

case 1:
cout << "One\n"; Which one
is wrong?
break;

case 2: { cout << "Two\n"; break; }

case 3: cout << "Three\n"; break;

default: cout << "Neither One, Two, nor Three\n";
} // end switch

5/2/17 Matni, CS16, Sp17 9

A Review of Basic Concepts
while loops

Is the logic correct in the code?

int num(1);

while (num != 0) {
cout << “Give me a number, or zero to quit: ”;

cin >> num;

»

if (num != @) cout << “Number x 10 =
<< num * 10 << endl;
else cout << “Quitting!\n”; 1. Note the syntax
2. Why does this type of loop
apply well to while loops?

3. Note the coding style

5/2/17 Matni, CS16, Sp17 10

A Review of Basic Concepts
for loops

Is the logic correct in the code?

int num = 25;

for (int j =
cout << “Loop run no.” << j << endl;
if ((num - 2*j) < 10) cout << “Condition 1 exists\n”;

1; j <= 10; j++) {

else cout << “...nothing...”;

}
1. Note the syntax
2. Why does this type of loop
apply well to for loops?

3. Note the coding style

5/2/17 Matni, CS16, Sp17 11

In-Class Exercise

A Review of Basic Concepts

fOr /OOpS What does this code do?
int numl, num2, flag2(1l), flag3(1l); 1. Note the syntax
cout << "Enter start, end numbers: "; 2. Why does this type of loop
cin >> numl >> num2; apply well to for loops?

for (int j = numl; j <= num2; j++) {

5/2/17

3. Why is it better to use
if/then here vs. switch?

cout << "The number " << j << endl; 4. Note the coding style

if (j % 2 == @) cout << "Divisible by 2\n";
else flag2 = 0; ‘

if (j % 3 == ©) cout << "Divisible by 3\n"; ﬁ';’;eize:;gission
else flag3 = 0; o

if (!(flag2 || flag3))“
cout << "Not divisible by either 2 or 3\n";

flag2 = 1; flag3 = 1;

cout << "----- << endl;

Matni, CS16, Spl17 12

5/2/17

Matni, CS16, Sp17

1’3

Designing Loops

What do | need to know?

* What am | doing inside the loop?

 What are my initializing statements?

 What are the conditions for ending the loop?

5/2/17 Matni, CS16, Sp17 14

Exit on Flag Condition

* Loops can be ended when a particular flag
condition exists

— Applies to while and do-while loops

— Flag: A variable that changes value to indicate
that some event has taken place

— Examples of exit on a flag condition for input
* List ended with a sentinel value
* Running out of input

5/2/17 Matni, CS16, Sp17

15

Exit on Flag Example

Consider this loop to identify a student with a grade of 90 or
better and think of how it’s logically limited.

g =1 ; //student ID number
grade = compute_grade(n);

// compute grade() is a function
while (grade < 90)

{

grade = compute_grade(n);
cout << "Student number " << n
<< " has a score of " << grade << endl;

n++;

5/2/17 Matni, CS16, Sp17

16

The Problem

* The loop on the previous slide might not stop at the
end of the list of students if no student has a grade
of 90 or higher

* |tis agood idea to use a second flag to ensure that
there are still students to consider

* The code on the following slide shows a better
solution

5/2/17 Matni, CS16, Sp17

17

Exit on Flag Example

5/2/17

int n
grade

=1;

//student ID number
= compute_grade(n);

// compute grade() is a function
while ((grade < 90) & & (n < number_of students))

{

grade =

cout

N++;

<<
<<

compute_grade(n);
"Student number "
" has a score of "

Matni, CS16, Sp17

<< n
<< grade << endl;

18

Debugging Loops

Common errors involving loops include:

* Off-by-one errors in which the loop executes
one too many or one too few times

* Infinite loops usually result from a mistake in
the Boolean expression that controls the loop

5/2/17 Matni, CS16, Sp17

19

Fixing Off By One Errors

* Check your comparison:
should it be < or <=7

e Check that the initialization uses the correct value

* Does the loop handle the zero iterations case?

5/2/17 Matni, CS16, Sp17

20

Fixing Infinite Loops
* Check the direction of inequalities:

< or >°7

* Test for < or > rather than equality (==

5/2/17 Matni, CS16, Sp17

21

More Loop Debugging Tips: Tracing

e Be sure that the mistake is really in the loop

* Trace the variable to observe how it changes

— Tracing a variable is watching its value change during
execution.

— Best way to do this is to insert cout statements

to have the program show you the variable at every iteration
of the loop.

5/2/17 Matni, CS16, Sp17 22

Debugging Example

 The following code is supposed to conclude with the variable
“product” equal to the product of the numbers 2 through 5

— i.e.2x3 x4 x5, which, of course, is 120.

* What could go wrong?! ©

ilpiisNescER=2 S product = 1;
while (next < 5)
{

next++;
product = product * next;

5/2/17 Matni, CS16, Sp17

Loop Testing Guidelines

* Every time a program is changed, it should be retested
— Changing one part may require a change to another

* Every loop should at least be tested using input to cause:

— Zero iterations of the loop body

— One iteration of the loop body

— One less than the maximum number of iterations
— The maximum number of iterations

5/2/17 Matni, CS16, Sp17

24

Starting Over

e Sometimes it is more efficient to throw out a
buggy program and start over!

— The new program will be easier to read
— The new program is less likely to be as buggy

— You may develop a working program faster than if
you work to repair the bad code

* The lessons learned in the buggy code will help you
design a better program faster

5/2/17 Matni, CS16, Sp17 25

5/2/17

Matni, CS16, Sp17

26

Testing and Debugging Functions

Each function should be tested as a separate unit
Testing individual functions facilitates finding mistakes
“Driver Programs” allow testing of individual functions

Once a function is tested, it can be used in the driver program
to test other functions

Example of a Driver Test Program

int main()

{

using namespace std;
double wholesale_cost;
int shelf_time;

char ans;

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

do

{

get_input(wholesale_cost, shelf_time);

cout << "Wholesale cost is now 3"
<< wholesale_cost << endl;

cout << "Days until sold is now
<< shelf_time << endl;

L1

cout << "Test again?"
<< " (Type y for yes or n for no): ";
cin >» ans;
cout << endl;
} while (ans == 'y' || ans == 'Y');

return 0;

5/2/17 Matni, CS16, Fal6

To Dos

* Homework #8 for Thursday
* Lab #5

5/2/17 Matni, CS16, Sp17

29

5/2/17

</LECTURE>

Matni, CS16, Sp17

30

