Pointers
Introduction to Structures

CS 16: Solving Problems with Computers |
Lecture #15

Ziad Matni
Dept. of Computer Science, UCSB

Administrative

* 4 MORE CLASSES TO GO! © * Due date changed!

5/30 5/31 6/1 6/2
LECTURE 15 LECTURE 16
HW13 due |Lab8issued |HW14 due
Lab7 due*
6/5 6/6 6/7 6/8 6/9
LECTURE 17 REVIEW
HW15 due HW16 due |Last day of
Lab8 due the quarter

5/30/17 Matni, CS16, Sp17 2

5/3

0/17

PeINTERrS

Matni, CS16, Sp17

Memory Addresses

* Consider the integer variable num that holds Address | Data
the value 42 001D
* num is assigned a place in memory. 1 byte{ 001E
In this example the address of that num | O01F 2
place in memory is Ox001F 0020
— Generally, memory addresses use hexadecimals 0021
— The “Ox” at the start is just to indicate the number is a he022

* The address of a variable can be obtained by putting the
ampersand character (&) before the variable name.
— & is called the address-of operator

— Example: num_add = # will result in num_add to hold
the value 001F (but expressed in decimal)

5/30/17 Matni, CS16, Sp17 4

Memory Address

Recal: num=42 and num add = &num = 0x001F

* Now, let’s make bar = num
— Another variable, bar, now is assigned the same value that’s in num (42)
— Note the difference between bar and num_add

 The variable bar will be assigned an address

— Let’s say, that address is 0x3A77

— Keep in mind, by default, we have no control over address assignments
* And this is just for illustrative purposes...

e The variable that stores the address of another variable
(like num_add) is what in C++ is called a pointer.

5/30/17 Matni, CS16, Sp17 5

Dereference Operator (*)

* Pointers “point to” the variable whose address they store
* Pointers can access the variable they point to directly

* Done by preceding the pointer name with the
dereference operator (*)
— The operator itself can be read as “value pointed to by”

fRecall: num=42 and num_add = &num = 0x001F
* So, while num_add = 0x001F, *num_add = 42

5/30/17 Matni, CS16, Sp17

Pointers

« A pointer is the memory address of a variable

« Memory addresses can be used as names for variables

— |If a variable is stored in three memory locations, the address of
the first can be used as a name for the variable

— When a variable is used as a call-by-reference argument, it's the
actual address in memory that is passed

5/30/17 Matni, CS16, Sp17

Pointers Tell Us (or the Compiler)
Where To Find A Variable

* Pointers "point" to a variable by telling
where the variable is located

int val = 5;
(int *otr = &val,;)

= OXFEN 5

Ox83 OxFE

5/30/17 Matni, CS16, Sp17

Declaring Pointers

 Pointer variables must be declared to have a
pointer type

« Example: To declare a pointer variable p that
can "point" to a variable of type double:

double *p;

* The asterisk (*) identifies p as a pointer variable

5/30/17 Matni, CS16, Sp17

Multiple Pointer Declarations

* To declare multiple pointers in a statement, use
the asterisk before each pointer variable

 Example:
iSRSt D - v, v2;

p1 and p2 point to variables of type int
v1 and v2 are variables of type int

5/30/17 Matni, CS16, Sp17 10

The address-of Operator

 The & operator can be used to determine the
address of a variable which can be assigned to
a pointer variable

 Example: pl = &vl;
p1is now a pointer to v1

v1 can be called
“the variable pointed to by p1”

5/30/17 Matni, CS16, Sp17 11

5/30/17

Matni, CS16, Sp17

12

Another Note on the
Dereferencing Operator (*)

« C++ uses the * operator in yet another way with
pointers

* The phrase “The variable pointed to by p” is
translated into C++ as *p

* p is said to be dereferenced

5/30/17 Matni, CS16, Sp17

13

A Pointer Example

vl = 0O; "
pIN=Rvl; vl and *p1 now refer to
*pl = 42; the same variable

cout << vl << endl;
cout << *pl << endl;

vl pl vl pl

output: N D D

42

5/30/17 Matni, CS16, Sp17 14

Pointer Assignment

« The assignment operator = is used to assign the value of
one pointer to another

Example: If p1 still points to v1 (previous slide) p2 =
then the statement [ol
p2 = p1;

causes *p2, *p1, and v1 all to name
the same variable

5/30/17 Matni, CS16, Sp17 15

Caution! Pointer Assignments

« Some care is required making assignments to pointer
variables

pl p3; // changes the location that pl "points" to

*p3; // changes the value at the location that
// pl "points" to

5/30/17 Matni, CS16, Sp17 16

Uses of the Assignment Operator
on Pointers

p2 »| 99

5/30/17 Matni, CS16, Sp17

Uses of the Assignment Operator

on Pointers
pl = p2
Before: After
pl = 84 pl 84
b2 = 99 p2 = 99
pl — % p2
Before: After:
pl = 84 pl =1 99
p2 = 00 p2 = 99

5/30/17

Matni, CS16, Sp17

18

The new Operator

« Using pointers, variables can be manipulated even if there is
no identifier for them

« To create a pointer to a new “nameless” variable of type int:
pl = new int;

 The new variable is referred to as *p1
* *p1 can be used anyplace an integer variable can
Example:

cin >> *pil;
*pl = *pl + 7;

5/30/17 Matni, CS16, Sp17 19

Dynamic Variables

« Variables created using the new operator are called
dynamic variables

 Dynamic variables are created and destroyed while the
program is running
— We don’t have to bother with naming them, just their pointers

5/30/17 Matni, CS16, Sp17

20

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{
int *pl, *p2;

pl = new int;

*pl = 42;
p2 = pl;
cout << "*pl == " << *pl << endl;

cout << "*p2 == << *p2 << endl;

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()

{
int *pl, *p2;

pl = new int;
*pl = 42;

Basic Pointer Manipulations
//Program to demonstrate pointers and dynamic variables.
#include <iostream>

using namespace std;

int main()

{
int *pl, *p2;
pl = new int;
*pl = 42;
p2 = pl;
cout << "*pl == " << *pl << endl;
cout << "¥*p2 == " << *p2 << endl;
*p2 = 53;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;
pl = new 1int;
*pl = 88;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;
cout << "Hope you got the point of this example!\n";
return 0;

}

Sample Dialogue

*pl == 42
*p2 == 42
EDIN=—853
*p2 == 53
*pl == 88
Ap2 ==53

Hope you got the point of this example!

Basic Memory Management

« An area of memory called the freestore or the heap is
reserved for dynamic variables
— New dynamic variables use memory in the freestore

— If all of the freestore is used, calls to new will fail
« So you need to manage your unused dynamic variables...

 Unneeded memory can be recycled

— When variables are no longer needed, they can be deleted and
the memory they used is returned to the freestore

5/30/17 Matni, CS16, Sp17 24

The delete Operator

 When dynamic variables are no longer needed,
delete them to return memory to the freestore

 Example:
delete p;

* The value of p is now undefined and the memory
used by the variable that p pointed to is back in
the freestore

5/30/17 Matni, CS16, Sp17 25

Dangling Pointers

« Using delete on a pointer variable destroys the dynamic
variable pointed to

 If another pointer variable was pointing to the
dynamic variable, that variable is also now undefined

« Undefined pointer variables are called dangling pointers
— Dereferencing a dangling pointer (*p) is usually disastrous

5/30/17 Matni, CS16, Sp17 26

Automatic Variables

« As you know: variables declared in a function are
created by C++ and then destroyed when the function
ends

— These are called automatic variables because their creation
and destruction is controlled automatically

 However, the programmer must manually control
creation and destruction of pointer variables with
operators new and delete

5/30/17 Matni, CS16, Sp17 27

Type Definitions

A name can be assigned to a type definition, then used
to declare variables

 The keyword typedef is used to define new type names

* Syntax:
typedef Known Type Definition New_Type Name;

where, Known_Type Definition can be any type

5/30/17 Matni, CS16, Sp17

28

Defining Pointer Types

* To help avoid mistakes using pointers,
define a pointer type name

« Example: typedef int* IntPtr;

Defines a new type, IntPtr, for pointer
variables containing pointers to int variables

IntPtr p;
IS now equivalent to saying: int *p;

5/30/17 Matni, CS16, Sp17

29

Multiple Declarations Again

« Using our new pointer type defined as
typedef int* IntPtr;

* Prevents error in pointer declaration:

« For example, if you want to declare 2 pointers, instead of this:
int *pl, p2;
// Careful! Only P1 is a pointer variable!

do this:

IntPtr pl, p2;
// pl and p2 are both pointer variables

5/30/17 Matni, CS16, Sp17 30

Pointer Reference Parameters

« A second advantage in using typedef to define a pointer
type is seen in parameter lists

 Example:
void sample_function(IntPtr& pointer_var);

IS less confusing than

void sample function(int*& pointer var);

5/30/17 Matni, CS16, Sp17 3

5/3

0/17

Structures

Matni, CS16, Sp17

What Is a Class?

A class is a data type whose variables are objects

Some pre-defined data types you have used are:
— int
— char

Some pre-defined classes you have used are:
— ifstream
— string

You can define your own classes as well

5/30/17 Matni, CS16, Sp17

Class Definitions

 To define a “class”, we need to...

— Describe the kinds of values the variable can hold
* Numbers? Characters? Both? Others?

— Describe the member functions
 \What can we do with these values?

« We will start by defining structures as a first
step toward defining classes

5/30/17 Matni, CS16, Sp17

34

Structures

« A structure can be viewed as an object

» Let's say it does not contain any member functions
(for now...)

It does contain multiple values of possibly different types

« We’'ll call these member variables

5/30/17 Matni, CS16, Sp17 35

Structures

 These multiple values are logically related to one
another and come together as a single item

— Examples:
A bank Certificate of Deposit (CD) which has the following
values:)
a balance —
an interest rate values should
a term (how many months to maturity) these be?!

— A student record which has the following values:
the student’s ID number |
the student’s last name ——=ii.
the student’s first name values should
the student’s GPA these be?!

5/30/17 Matni, CS16, Sp17 36

The CD Structure Example:
Definition

The Certificate of Deposit structure can be defined as
struct CDAccount

{
double p

double ;
int 5

} se—— Remember this semicolon!

Keyword struct begins a structure definition
CDAccount is the structure tag — this is the structure’s type
Member names are declared in the braces

5/30/17 Matni, CS16, Sp17 37

Using the Structure

« Structure definition should be placed outside any
function definition

— This makes the structure type available to all code that follows
the structure definition

* To declare two variables of type CDAccount:

CDAccount my _account, your account;

— my_account and your_account contain distinct
member variables , , and

5/30/17 Matni, CS16, Sp17 38

The Structure Value

 Structure Value consists of all the values of the
member variables

* The value of an object of type CDAccount
consists of the values of the member variables

5/30/17 Matni, CS16, Sp17 39

Specifying Member Variables

 Member variables are specific to the structure variable in
which they are declared

« Syntax to specify a member variable (note the *.")
Structure Variable Name . Member Variable Name

— Given the declaration:
CDAccount my account, your_account;

— Use the dot operator to specify a member variable

my account.balance
my _account.interest rate
my_account.term

5/30/17 Matni, CS16, Sp17 40

//Program to demonstrate the (CDAccount structure type.

#include <iostream>
using namespace std;

S/Structure for a bank certificate of deposit:

struct CDAccount

{

double balance;
double interest_rate;

Note the struct
definition is placed
before main()

int term://months until maturity

}s

void get_data(CDAccount& the_account);

//Postcondition: the_account.balai

//have been given values that the

declaration
of CDAccount

done with the
structure’s member
variables

5/30/17

int main()
{
. CDAccount account;
get_data(account);

double rate_fraction, interest;

rate_fraction = account.interest rate/100.0;

interest = account.balance*rate_fraction*(account.term/12.0);
account.balance = account.balance + interest;

cout.setf(ios::fixed);

cout.setf(ios: :showpoint);

cout.precision(2);

cout << "When your CD matures in
<< account.term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;

//Uses iostream:
void get_data(CDAccount& the_account)

{

cout << "Enter account balance: $";
L//// cin >> the_account.balance;
cout << "Enter account interest rate: ";
the structure’s cin >> the_account.interest_rate;
member variables cout << "Enter the number of months until maturity\n"

with an input << "(must be 12 or fewer months): ";
stream cin >> the_account.term;

Sample Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity
(must be 12 or fewer months): 6

When your CD matures in 6 months,

it will have a balance of $105.00

5/30/17 Matni, CS16, Sp17 42

5/30/17

</LECTURE>

Matni, CS8, Sp17

43

